
Laboratory of Artificial
Intelligence and Robotics

by Lucas De Marchi

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 2

Outline

About the game

Project goals

Complexity

Implementation

How to add your own Player algorithm

Minmax

Future work

Hands on!

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 3

About the game

Tic-tac-toe 3D

Actually, a little more: NxNxN tic-tac-toe

The very same basic rule applies: the goal is to align N
pieces in whatever direction, where N is the so
called dimension of the game

A real 4x4x4 board (University of Sao Paulo - Brazil):

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 4

Project's goals

Implement it as a computer game

Give the possibility to play:

Human vs Human

Computer vs Human

Computer vs Computer

Create a Minmax-based algorithm to play the game

Ease the creation of further algorithms

Create a 3D interface to better visualize the output

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 5

Complexity

Let n be the dimension of the game

The first piece can be placed in n³ different places

The second piece can be placed in n³ – 1 places

These two iterations created states

Going on with this reasoning (without accounting for
symmetry) the number of possible states is:

n3
n3

−1

n3
⋅n3

−1⋅n3
−2⋅  ⋅1=n3

!

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 6

Complexity

Let's see the number of final states for n even. After the
last possible the board will be full and since the player
take turns, turn there will be pieces of each one.
It's a k-combination problem.

Number of final states (NFS):

For n = 4, this leads to roughly 1.83E+18 final states

n3
/2

NS= n
3

n3

2 = n3!

n3

2
!⋅
n3

2
!

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 7

Complexity – the goal test

Inside a cube with side n there are 13 directions in
which it's possible to align N pieces

A “goal test” function which has the information of
where the last piece was put, must just check these
13 possible directions starting from this position.

Example: a possible direction is [1, 0, 0]. If the last player
put a piece on [2, 0, 1], we can sum and subtract the
direction until reaching the cube's border. If the number
of pieces counted and the dimension are equal, the last
player has won.

So, in the worst case we expend 13n operations to
decide if the game is finished and who is the winner.
Therefore the complexity is O(n).

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 8

Complexity – another goal test

If we don't have information of the last position, we
have to test all directions applied to all points and
keep track if a certain direction already “passed
through” a certain point.

The complexity is always the same, since we have to
scan the entire board every time its configuration is
changed. Simply counting all the possible
alignments of n pieces we get:

operations, thus having an O(n²) algorithm.

3n2
10n

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 9

Implementation

Powered by:

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 10

Implementation – Design

RandomHuman

Minmax

Player PlayerFactory
<<create>>

ConfigManager

Game

UI

UIText UI3d

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 11

Implementation – Design (more detailed)

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 12

How to add your own Player

You have to do only 3 steps:

i. Implement the abstract class Player

ii. Compile it into a shared library

iii. Put it in the folder you configured Trissa to look for
players. You can even send it to another person on
another computer to prove your algorithm is better

Implementing Player is basically a matter of
implementing the “play” method, called by Trissa
when its turn is arrived.

If you use Trissa's building system, these 3 steps can
be reduced to the first one

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 13

How to add your own Player

class MyPlayer : public trissa::Player {
public:
static char* name;
MyPlayer(int dimension, trissa::PlayerType player_type)
: trissa::Player(dimension, player_type){
//Put your constructor’s implementation here
}

~MyPlayer(){
//Put your destructor’s implementation here
}

virtual trissa::Move* play(trissa::Cube const& board, trissa::Move const& opponentMove)
{

//Your implementation of deciding in which position to put a piece
}

virtual trissa::Move* firstPlay(){
//Your implementation of deciding in which position to put a piece when your player
//is the first one to play (in general hard-coded).
}

virtual const char * getName() const {
 return name;
}
char MyPlayer::name = (char*)“My Player Name”;
REGISTER_PLAYER(MyPlayer)

http://wiki.github.com/lucasdemarchi/trissa/howto-player-algorithms

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 14

Minmax

“Minmax Player” is the better player implemented until
now. It uses the well known Minimax algorithm with
α-β pruning.

As noted in the complexity study, the number of states
is huge. It's not practical to predict all the states to
play.

The level L in the tree indicates how deep the search
will be and is configured at compilation time

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 15

Minmax

When level L is reach, a state evaluation function is
performed to decide how good is that state

The following heuristic is used in this implementation:

If there are n pieces aligned

Return INF if pieces are mine or -INF otherwise

Otherwise, return:

ret = ∑
i=0

n−1

i−i⋅i
2

i : number of lines in which I have i aligned pieces
i : number of lines in which my opponent has i aligned pieces

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 16

Future work - Players

Other possible algorithms or modifications to exist
ones:

MTD(f)

Machine learning (WIP)

Fine-tune the heuristic of Minmax

Minmax with interactive-deepening (this allows to put a
time constraint in which a Player has to return a
position

Minmax with state caching: don't recalculate parts of the
tree already scanned, this allows to have a greater
depth and thus predict more states

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 17

Future work - Game

The present game is at v0.98 (waiting some time to
make sure it's stable to release v1.0)

Planned for v1.1:

Porting to Windows / MacOS X

Audio integration

Planned for v1.2:

“Network Player” which will make possible to play through
Internet

Some others no-so-smart/no-so-dumb Players (for
example a “Linear Player”

Other algorithms?

MTD(f) ?

Machine-learning ? (WIP)

7/29/09 Lab. Artificial Intelligence and Robotics - Trissa page 18

Hands on!

Source code:
http://github.com/lucasdemarchi/trissa

Future site:
http://www.politreco.com/trissa

LET'S PLAY!

http://github.com/lucasdemarchi/trissa
https://politreco.com/trissa

	Title
	Outline
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Highlight

